Osculating quadrics of ruled surfaces in reciprocal rectilinear congruences
نویسندگان
چکیده
منابع مشابه
Characterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملConchoid surfaces of quadrics
The conchoid surface Fd of a surface F with respect to a fixed reference point O is a surface obtained by increasing the distance function with respect to O by a constant d. This contribution studies conchoid surfaces of quadrics in Euclidean R and shows that these surfaces admit real rational parameterizations. We present an algorithm to compute these parameterizations and discuss several conf...
متن کاملApproximation by ruled surfaces
Given a surface or scattered data points from a surface in 3-space, we show how to approximate the given data by a ruled surface in tensor product B-spline representation. This leads us to a general framework for approximation in line space by local mappings from the Klein quadric to Euclidean 4-space. The presented algorithm for approximation by ruled surfaces possesses applications in archite...
متن کاملConchoid surfaces of rational ruled surfaces
The conchoid surface G of a given surface F with respect to a point O is roughly speaking the surface obtained by increasing the radius function of F with respect to O by a constant d. This paper studies real rational ruled surfaces in this context and proves that their conchoid surfaces possess real rational parameterizations, independently on the position of O. Thus any rational ruled surface...
متن کاملRuled Laguerre minimal surfaces
A Laguerre minimal surface is an immersed surface in R being an extremal of the functional ∫ (H/K− 1)dA. In the present paper, we prove that any ruled Laguerre minimal surface distinct from a plane is up to motion a convolution of the helicoid x = y tan z, the cycloid r(t) = (t− sin t, 1−cos t, 0) and the Plücker conoid (ax+ by) = z(x+y) for some a, b ∈ R. To achieve invariance under Laguerre t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1941
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1941-07571-3